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Abstract 

One may be interested in a pure multipole magnetic field (i.e, proportional to sin (nO) or cos (nO)) 
whose strength varies purely as a Fourier sinusoidal series of the longitudinal coordinate z ( say 
proportional to cos (2m"LI

)7rz , where L denotes the half-period of the wiggler and m=I,2,3 ... ). Associated 
with such a z variation, there necessarily will be present a z component of magnetic field which in the 
source-free region, ·in fact, will give rise to both normal and skew transverse fields associated with 
the functions An(z) and ;In(z) as expressed in Referencebc• In this note the field components and 
expression for the scalar potential both inside and outside a thin pure winding surface are included with 
additional contributions from a possible high permeable shield. It is also shown that for a pure dipole 
case of n=l and a pure axial variation of m=l the transverse field can be derived from a simple two 
dimensional field. 

Scalar Potential 

We note that in the curl-free divergence-free region near the axis 1'=0 the field components may be 
expressed as given by B = - \7V where V is a scalar potential function for which \72V = O. 

(I) 

The general fOlm for the proposed solution as shown in Reference c can be written in the form that 
includes both "skew" and "non-skew" terms of all integer harmonic of order n (including n=O): 

_ n (-1) n! 2k (2k) . . -(2k) 

{
HI } 

V - - ~ l' (; 22k k!(n + k)! l' [An (z) sm nO- An (z) cos nO] 

and the magnetic field components derived accordingly as : 

where 

B av" [ ,,-I' 0 - n-I 0] 
r = - aI' = L..-- gmT sm n - gmT COS n 

n 

Bo = -~V = L [gOn l ,n-1 cosnO + 90nl',,-1 sin nO] 
n 

B av" [ " . 0 - n OJ Z = - [}z = L..-- gznT sm n - gzn T COS n 
n 

gm == 9rn 

gOn == gO" 

9zn == gzn 

(2) 

(3) 

(4) 

are general functions of l' and z that include the appropriate "normal" and "skew" terms 
An(z) and ;In(z) ( see Appendix B ). 

b 3D Field Harmonics - S.Caspi , M.Helm , and LJ. Laslett , SC-MAG-328 , LBL-30313 , March 
1991. 
c An Approach To 3D Magnetic Field Calculation Using Numerical and Differential Algebra Methods 
- S.Caspi , M.Helm , and LJ. Laslett , SC-MAG-395 , LBL-32624 , July 1992. 



Inner Field r < R 

For the region within the windings ( R equals the thin winding radius) of a helical wiggler such 
functions and even derivatives of order (2k) are expressed as 

An(z) = L Bn,m cos [(2m -1) ~Zl 
m=I 

An(z) = L Bn,m sin [(2m - 1) '7l 
m=l 

Ah2k )(z) = l; (_I)k [(2m ~ 1)11" r Bn,m cos [(2m - 1) '7l 
(5) 

[ ]

2k 
An (2k)(z) = L (_I)k (2m ~ 1)11" Bn,m sin [(2m - 1) 11"ll 

m=I 

and with the substitution of the above expressions into the scalar potential V ( Equation 2) 

V(.O )=" '''B [ 2L ]n" 1 [(2m_l)11"r]2k+n. [o_(2m -l)11"Z ] 
1"Z Dn'D n,m (2m-l)11" Dk!(n+k)! 2L sm n L 

n=l m=l k=O 
(6) 

and with 

1 (wmr)2k+n 
In(wmr) = L k!(n + k)! -2-

k=O 

(7) 

where In denotes the "modified" Bessel function ( of the first kind and order n), 

(2m - 1)11" 
Wm = L and Gn m = n! (.2..) nBn m 

, Wm ' 
(8) 

we express the scalar potential ( Equation 6 ) as 

V(r, 0, z) = L L Gn,m1n(wmr) sin (nO - wmz) (9) 

n=l m=l 

where for a dipole sextupole , decapole etc, n=I,3,5 .... , m=I,2,3 .... , and L = half period. 

The transverse field components and z directed field thus become 
, 

(10) 

with , n 
In(wmr) = In-l (Wml') - --In(wmr) 

wmr 
(11) 

where the prime denotes differentiation of the Bessel function with respect to its argument. 

2 



Outer Field r > R 

For a configuration in which the magnetic field components are produced by means of currents 
confined to lie on the surface of a circular cylinder ( radius R), it can be of interest to evaluate the 
character of the magnetic field components that must be present in the external region ( r>R ) and 
to determine the components ( Jz and JB' at R) of current density for this configuration. The surface 
currents will give rise to a discontinuity of the components Bz and BB at the interface ( r=R ), but the 
normal ( radial) component will pass continuously through this surface and assume the form 

" " I~(wmR)' . BT = - ~ ~ Gn,mwm K~(wmR)Kn(wmr) Sill (nB- wmz) (f or I ' ~ R) (12) 

Consistent with Br written immediately above a scalar potential function V for the external region is 
given by 

(fOI' l' ~ R) (13) 

where the prime denotes differentiation of the Bessel functions with respect to its argument, and 

(14) 

The remaining field components are found to be 

" " I~(wmR) 1 ( ) ( ) Bo = - L. L. nGn,m '( R) Kn wmr cos nB - Wm Z 
Kn Wm l' 

n=l m=l 

" " I~(wmR) Bz = ~ ~I G",mwm K~(wmR)K,,(wmr) cos (nB- wm z) 

(15) 

Surface currents at r=R 

The discontinuity of the field components at the interface r=R now permit evaluation of the 
corresponding surface currents on this cylindrical surface. We denote the current system at the interface 
r=R by j = Jzez + Jo eo ( amp/m ), and recall the relation..!.. J: jj . dl = I ( or ..!..(C,B) = J ), where ~o y ~o 

1'0=41T1O-7 in MKS-A units, Then 

Jz(B, z )IT=R = -'!"-[Boxt - B~nt ' l 
1'0 

_ 1 "" G I,,(wmR)K~(wmR) - I:(wmR)Kn(wmR) (n ) 
- - ~ 6 n n m I () cos no - WmZ 

Ito n=1 m=I' RK" wmR 

(16) 

" 1 and through the use of the Wronskian InKn - InK" = ----,. 
W m I>. 

1"" 1 1 Jz(B, Z)IT=R = -- L. L. nG",m-R2 J(' ( R) cos (nB- wmz) 
Jio Wm n Wm n=l m=] 

(17) 
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and 

(18) 

and again through the use of the Wronskian 

1", 1 1 
Jo(lI, Z) lr=R = --62: G",m R 1(' (w R) cos (nil - wmz) 

. Po n=1 m=1 " m 

(19) 

The pair of components satisfy the conservation condition \1 . J = flj: + *~ = 0 as required. 

Contribution of axially-symmetric ferromagnetic shield 

We realize that if an . axially-symmetric ferromagnetic shield of high permeability is present with 
a radius r=a ( a > R ), the induced magnetization will contribute supplemental fields ( "image fields") 
that in the region interior to r=a may themselves be derived from a scalar potential (Vr'~ge). The 
appropriate boundary condition at r=a will be fulfilled if we specify that V/::::ge + Vr':!:ect = constant 
or if we conveniently specify that V/:::a

age 
= - v,,~:ect and specifically 

v. image _ '" '" G I:(wmR) T.( ( ). ( II ) 
r=a - - ~ ~ n,m I ( )1' n wma sin n - WmZ 

n=1 m=1 ](n wmR 
(at r = a) (20) 

If the iron radius is constant ( not a function of z) we can write the scalar potential for r~a 

(at r::; a) 

(21) 
For the TOTAL magnetic potential function at r<R<a , we then have 

total '" '" [ I~(WmR)](n(Wma)] ( ). ( ) v,,<R = 6 6 Gn,m 1 - , ( R)I ( ) In wmr 8m nil - wmz ](n wm n wma 
n=l m=l 

(22) 

The factor contained within the square brackets is an enhancement factor arising from the inclusion of 
magnetization developed in the high permeability ferromagnetic shield. For the special 2d case where 
L ---> 00 or w m a« 1 this factor becomes approximately 

(23) 

and the potential 

(24) 
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as expected for the enhancement of the 2D field. For the above approximation we made use of the 
following asymptotic relations 

S ->0 

1n(s) ~ ~(:')" 
n! 2 

](n(s) ~ (n ~ I)! (~)-n 
(25) 

, 1 (S)"-I 
1n(s) ~ 2(n _ I)! "2 

, n! (S) -(n+l) ]( (s) ~ -- -
n 4 2 

The square brackets in Equation (22) is plotted in Fig. 4 Appendix A for n= 1 and m= 1. 

Helical dipole with simple sinusoidal relation 

We shall examine a helical dipole with single terms for both series n and m. The choice n= 1 
indicates a pure dipole with no higher harmonics , and m=l indicates a pure 'Trz/L variation with no 
additional frequencies. We express the field components for r<R and n=m=l as 

and 

ito, z) = - 2!:'1 C~) ](; tqf) [eo + 'Tr~ez] cos (0 _ ~z) 
We note that a linear relationship exists between the following field components 

Bz 

Bo L 

(26) 

(27) 

(28) 

and note as well that for ¥ < f 01' r < f the field components can be expressed with less than 
1 % error as 

[ 
3 ('Trr) 2 5 ('Trr) 4 7 ( 'Trr) 6 ] ( 'Tr z) 

Br = -BI,I 1 +"2 2L + 12 2L + 144 2L + .... sin 0 - L 

Bo = -BI I 1 + - - + - - + - - + . ... cos 0 - -[ 
1 ('Trr)2 1 ('Trr)4 1 ('Trr)6 ] ( 'TrZ) 

, 2 2L 12 2L 144 2L L 
(29) 

'Trl' [ 1 ('Trl') 2 1 ('Trr) 4 1 ('Trr) 6 ] ( 'Tr Z) 
Bz = BI,I L 1 +"2 2L + 12 2L + 144 2L + . ... cos 0 - L 

The representations above will describe a field that formally is both divergence free and curl free -
provided that the summations are not truncated. If, however, we wish to tmncate these series expressions, 
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we at best can only do so in such a way that one, but not both, of these conditions is satisfied. Thus, 
if we wish to preserve the divergence condition "il . jj = 0, we should take care that the sum over the 
k index in the selies for Bz should terminate at a value of k that is less by unity than the termination 
value for this index in the selies for the transverse field components Br & Bo. 

We shaU calculate Bl,l and compare it with B2d that is produced by a straight long dipole 
(L -> 00) carrying the same total current. In the 2D case where a current density ( per unit length) 
of J(fJ ) = Jo cos fJ and Jo = ~ will produce a dipole field of B2d = p% , the dipole field in terms 
of the total amp-turn is 

B _ /loIo 
2d - 2R (30) 

We shaU evaluate the total amp-turn in the helical wiggler by integrating the azimuthal current density 
along 11=0 using equation (27) ( see Fig. 1 below). 

1rR 
s= -

L 
• L L 
2' 2' 2' (31) 

J J . 2BI ,1 1 J 1rZ 2BI ,IR 
10 = J, I,=oRdll = Jolo=odz = - ---;;- sJ(;( s) cos [;dz = - /lo s2 J(;( s) 

o 0 0 

By equating the total current in both the 2D dipole and the helical wiggler the ratio of their transverse 
fields can be reduced to a dimensionless form : 

BI,1 = 82J(; (8) 
B2d 

and note that in the limiting case ( using Eq. 25) as L -+ 00 

L 

/
. BI I 
uns~o-B' = 1 

2d 

Pole 

2 midplane 

6 

(32) 

(33) 



as it should be. 

The relation between the normalized transverse fields and s (Eq. 32) plotted in Figure 1, reveals 
a range that surprisingly is grater than 1 where a maximum of 1.0616089 is reached at s=0.6. A 
computational check was made with a cylinder of radius R=2.0 em, surrounded by a current sheet in 
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a cosO fashion ( Figure 2) such that 

10 3 
J = R cosO = 39 x 10 cosO (A/em) (34) 

with a dipole field of 

11010 
B2d = 2R = 2.4504 (tesla) (35) 

( we picked N=39 turns, 1=2000 A and note that Io=NI). A quick check with the 2D program "pkpeak" 
yields a similar value of B2d=2,4583 (tesla). Applying the same current configuration in two examples 
of a helical wiggler with the same radius R but different periods, such that 

7rR 
s = L = 2.513 

7rR 
s = L = 0.6283 

em 
(36) 

'x2 = 2L = 20 em 

Equation (32) then predicts the following results : 

BI,I('xI) = 0.567 or 
B2d 

BI,I = 1.3976 (tesla) 

BI ,I('x2) = 1.06135 01' 

B2d 
BI,I = 2.600 (tesla) 

With the aid of the 3D program "figends" using a model such as shown in Figure 3, the corresponding 
values are : 

BI,I('xd = 0.5652 01' BI,I = 1.3894 (tesla) 
B2d 

BI,I('x2) = 1.0518 or BI,I = 2.5858 (tesla) 
B2d 

We comment here that the field components as described by Eq. (26) differs from the corresponding 
expression written in the Appendix of a paper by J.Blewett et ald due to possible typographical errors 
in that paper. We also note that if we express the total current written in equation (31) in a form similar 
to that expressed in Blewett's paper we arrive at the total current per pole (= 210) 

5BI l'xO 
Current/pole = (R' ) 

7r2 ~L](O + ](1 
(39) 

where 'xo=2L ( period ). Blewett's expression for the current differs by a factor of VI + (f'Il)2 

5BI,I'xOV1 + (fR.)2 
CU7'1'ent/pole = ( R ) 

7r2 T](O + ](1 
(40) 

For the case of a single pair of current carrying wires wound in a bifilar helixe this expression is also 
different from both cases. 

d 

e 

5BI l'xO 
Current/pole = (R ' ) 

47r ~L ](0 + ](1 
(41) 

Orbits and fields in the helical wiggler - , Journal of Applied Physics, Vol. 48, No.7, July 1977 
Static and Dynamic Electricity - W.R.Smythe, p.277. 
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Figure 2 Winding cross section in a cosO configurntion. 
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Figure 3 3D windings for half period L=tO in a cos(1fz!L) configuration. 
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Appendix A Iron contribution 

Equation (22) suggest a field enhancement factor arising from an iron sheet placed at r=a. Figure 4 
shows such a factor for n=l and m=l as a function of s = "l with the ratio of aIR used as a parameter.! 

0 
0 ~ <Xl r-: \0 "1 "': '" CO'! - ~ 
C'i - - - - - - - - - -

lOl:)lld 

Figure 4 Field compression factor in a helical dipole wiggler. 

I would like 10 acknowledge the help I received from Domenico Dell'orco in producing this gmph. 
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Appendix B 3D harmonic coefficients 

In order that the series for the potential V n satisfy the differential equation (Eq. I) we introduce 
the functions An (z ) and express the coefficients grn , gOn , 9 zn as general functions of r and z as 
shown below : 

( ) = "(_1)k+1 n!(n+2k) A(2k)( ) 2k 
gmr, z ~ 22k k!(n+k)! n zr 

k=O 

( . ) _ "( )k+1 n!n (2k)( ) .2k 
gOn7, z -~-1 22k k!(n+k)!An Z 7 

k=O 
(1) 

" k+1 n! (2k+1) 2k 
gzn (r, z)=~(-1) 22kk!(n+k)!An r 

k=O 

Explicitly we can write the above as : 

n+2 n 2 n+4 nn 4 
grn(r, Z) = -nAn(Z) + 4(n + 1) An(Z)7' - 32(n + I)(n + 2) An (z )r 

n+ 6 111111 6 

+ 384(n + I)(n + 2)(n + 3) An (z )r - ... 
n /I 2 n III/ 4 

gOn(r,z) = -nAn(z ) + 4(n + I)An( Z)7' - 32(n + I)(n + 2)An (z ),. (2) 

n 111111 6 

+384(n +I)(n+2)(n+3)An (z ),. - ... 
J 11112 1 111114 

gzn(,.,z)=-An(z )+ 4(n+I)An (z )r -32(n+I)(n+2)An (z ),. ..... 

For the expressions of the skew terms just replace grn , gOn ,gzn with grn , gOn ,gzn and An(z) 
with An(z ) 

The representation specified above for 3-D magnetic fields, can be written in terms of functions 
An(z) and An( z ) and their derivatives for the example used in the main part of the paper where n=1 
and m=l, such that: 

(2k) k(7r)2k 7r Z 
Al = (-I) L BI,lcos y 

-(2k) k(7r)2k 7rZ 
Al = (-I) L BI,jSin y 

A(2k-l) (l)k(7r) 2k-IB . 7r Z = - - Ilsm-
I L' L 

(3) 

A-(2k-l) (1)k+1 (7r) 2k-I B ' 7r Z 
= - - IICOS -

I L' L 

In the next sel1es of graphs we include results of such A's ( both normal and skew) computed by 
the program "figends" for one of the example previously noted ( 2L=5.0). We note the sinusoidal 
periodicity of the A's and their derivatives according to the above relations. 
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